Techior Solutions Pvt. Ltd. Godavari Complex, Hingna T-Point, Nagpur Contact No: 9766616435 Email Id:techior.solutions@gmail.com

Time: 3 Hour

NEET

Subjects : Physics, Chemistry, Botany, Zoology

Section :1 Subject : Physics

- 1. The relative density of a metal may be found by hanging a block of the metal from a spring balance and noting that in air the balance reads (5.00 ± 0.05) N while in water it reads (4.00 ± 0.05) N. The relative density would be quoted as
 - (a) (500 ± 0.10) (b) $5.00 \pm 6\%$ (c) (5.00 ± 0.05) (d) $5.00 \pm 11\%$
- 2. In a thermal power station :
 - (a) chemical energy of burning coal is converted into electrical energy
 - (c) potential energy is converted into electrical energy
- (b) gravitational energy is converted into electrical energy

Total Marks: 720

- (d) geothermal energy is converted into electrical energy
- 3. A body at rest is acted upon by a constant force. What is the nature of v-t graph ?
 - (a) Straight line
 - (c) Asymmetric parabola

(b) Symmetric parabola

- (d) Rectangular hyperbola
- . The following question consist of two statements Statement 1 and Statement 2. Select one of the following options :

Statement 1 : In two dimensional motion of a body air friction has a significant role.
Statement 2 : Since the air action or reaction are opposite to motion of the body only so net speed can be taking in the valid direction for two dimensional motion.

- (a) If both Statement 1 and Statement 2 are true and Statement 2 is a correct explanation of the Statement 1.
- (b) If both Statement 1 and Statement 2 are true but the Statement 2 is not a correct explanation of Statement 1.
- (c) If Statement 1 is true but Statement 2 is false.
- (d) Both Statement 1 and Statement 2 are false.
- 5. Two bodies with masses m₁ and m₂ (m₁ > m₂) are joined by a string passing over a fixed pulley. The centres of gravity of the two masses are initially at the same height. Assume masses of the pulley and weight of the thread negligible. The acceleration of the centre of mass of m₁ and m₂ is :

(a)
$$\frac{m_1 - m_2}{m_1 + m_2}$$
 (b) $\frac{m_1 g}{m_1 + m_2}$
(c) $\frac{m_2 g}{m_1 + m_2}$ (d) $\left(\frac{m_1 - m_2}{m_1 + m_2}\right)^2 g$

All The Best!!!

- 6. A small sphere is suspended by a string from the ceiling of a car. If the car begins to move with a constant acceleration a, the tension generated in the string is :
 - (a) $T = T_0$
 - (c) $T < T_0$

(b) $T > T_0$

(d) T = 0 where T_0 is the tension in the string when the car is at rest or moving with uniform velocity.

7. Work done in moving a body up an inclined rough plane (^µ) of length s will be :

(a) mg(sinθ–μcosθ) s

(b) mg(μsinθ-cosθ) s

(c) mg(μsinθ + cosθ) s

- (d) mg(sin0+cos0) s
- 8. Two concentric shells of masses M₁ and M₂ are having radii r₁ and r₂. Which of the following is the correct expression for the gravitational field on a mass m ?

(c) _{F=}

(a)
$$F = \frac{G(M_1 + M_2)}{r^2}$$
, for $r < r_1$

$$\frac{GM_2}{M_2}$$
, for $r_1 \leq r \leq r_2$

(b) $F = \frac{G(M_1 + M_2)}{r^2}$, for $r < r_2$

(d) $F = \frac{GM_1}{r^2}$, for $r_1 < r < r_2$

9. The following question consist of two statements - Statement 1 and Statement 2. Select one of the following options :

Statement 1: A planet revolving around sun gathering mass some how gets an increase in its speed.

Statement 2 : More mass means more weight.

(a) If the Statement 1 and Statement 2 both are true and Statement 2 is correct explanation of the Statement 1. (b) If the Statement 1 and Statement 2 both are true but Statement 2 is not the correct explanation of Statement 1.

- (c) If the Statement 1 is true but Statement 2 is false.
- (d) If the Statement 1 and Statement 2 both are false.
- ^{10.} If R is the radius of earth, the height at which the weight of a body becomes $\frac{1}{4}$ of its weight on the surface of earth is :

(a) 2R	(b) R
(c) <u>R</u>	(d) <u>R</u>

11. If a section of soap bubble (of radius R) through its centre is considered, the force on one half due to surface tension is :

(a) ^{2π RT}	(b) 4πRT
(c) _{πR²T}	(d) 2T/R

12. Thermometers which are not kept in touch with the body to measure temperatures are :

(a) pyrometers

(b) thermocouples

(c) gas thermometers

- (d) vapour pressure thermometers
- 13. 5 gm of steam at 100° C is passed into six gm of ice at 0° C. If the latent heats of steam and ice in cal per gm are 540 and 80 respectively, the mixture contains :
 - (a) 11 gm of water

(b) 8 gm of water

(c) 6 gm of water

- (d) 5 gm of water
- 14. A rod of length I with thermally insulated lateral surface is made of a material whose thermal conductivity K varies as K = C/T, where C is a constant. The ends are at temperatures T_1 and T_2 . The heat flow density is :
 - (a) $_{C \log \frac{T_2}{T_1}}$ (b) $_{C \log \left(\frac{T_2}{T_1}\right)}$ (c) $_{\overline{1} \log (T_1 T_2)}$ (d) $_{C \log \left(\frac{T_2}{T_1}\right)}$
- 15. A gas at state A changes to state B through path I and II shown in figure. The change in internal energy is AU₁ and AU₂ respectively. Then :

$$(a) \Delta U_1 > \Delta U_2$$

or Solution $\Delta U_1 < \Delta U_2$ By $\Delta U_1 < \Delta U_2 = 0$

- 16. Blowing air with open mouth is an example of :
 - (a) isobaric process

(b) isochoric process

(c) adiabatic process

(d) isothermal process

(b) <u>√</u><u>k</u>

(d) $\frac{\pi}{4}\sqrt{\frac{k}{m}}$

17. One end of a spring of force constant k is fixed to a vertical wall and the other to a body of mass m resting on a smooth horizontal surface. There is another wall at a distance ×_o from the body. The spring is then compressed by ^{2x}_o and released. The time taken to strike the wall is :

$$\begin{array}{c} A & B \\ \hline H = 2x_0 + H \\ \hline C \end{array}$$

- $\frac{\pi}{6} \sqrt{m}$
- (c) $\frac{2\pi}{3}\sqrt{\frac{m}{k}}$
- 18. If sound waves can be assumed to be diffracted which of the following objects will diffract sound waves in air from a 384 Hz tunning fork?

(a) A sphere of radius 10m

(b) A sphere of radius 1 m

(c) A sphere of radius 1 mm

(d) A sphere of radius 1 cm

 When two waves of almost equal frequencies n₁ and n₂ are produced simultaneously, then the time interval between successive maxima is :

(a)
$$\frac{1}{n_1 - n_2}$$
 (b) $\frac{1}{n_1} - \frac{1}{n_2}$
(c) $\frac{1}{n_1} + \frac{1}{n_2}$ (d) $\frac{1}{n_1 + n_2}$

20. The following question consist of two statements - Statement 1 and Statement 2. Select one of the following options :

Statement 1: Popular form of Newton Laplace formula is $v = \sqrt{\frac{\lambda P}{\rho}}$ where v is velocity of

sound, $\,\,^{\gamma}$ is ratio of molar specific heats at constant pressure and volume. P is pressure and $\,^{\rho}$ is density of medium.

Statement 2 : Laplace corrected Newton's formula. According to Laplace sound travels in a gas as per isothermal conditions.

- (a) If Statement 1 and Statement 2 both are true and Statement 2 is correct explanation of Statement 1.
- (c) If Statement 1 and Statement 2 both are false.

(b) If Statement 1 and Statement 2 both are true but Statement 2 is not the correct explanation of Statement 1.

- (d) If Statement 1 is true but Statement 2 is false.
- 21. A man M_1 of mass 80 kg runs up a staircase in 15 s. Another man M_2 also of mass 80 kg runs up the same staircase in 20 s. The ratio of the power developed by them will be :
 - **(a)** 1

(b) 4/3

(c) 16/9

(d) none of these

22. Two pendulum each of length I are initially situated as shown in figure. The first pendulum is released and strikes the second. Assume that the collision is completely inelastic and neglect the mass of string and any frictional effects. How high does the centre of mass rise after the collision ?

23. A charge Q is uniformly distributed over a large square plate of copper. The electric field at a point very close to the centre of the plate is 10 V/m. If the copper plate is replaced by a plastic

	plate of the same geometrical dimensions and carrying the same charge Q uniformly distributed, then the electric field at the point P will be		
	(a) 5 V/m	(b) zero	
	(c) 10 V/m	(d) 20 V/m	
24.	The following question consist of two statement the following options : Statement 1 : The electric current is because of Statement 2 : The drift velocity is very small as	ts - Statement 1 and Statement 2. Select one of of drift velocity of electrons. s compared to the thermal velocity.	
	 (a) If both Statement 1 and Statement 2 are true and the Statement 2 is the correct explanation of the Statement 1. (c) If Statement 1 is true but Statement 2 is false. 	 (b) If both Statement 1 and Statement 2 are true but Statement 2 is not the correct explanation of the Statement 1. (d) If Statement 1 is false but Statement 2 is true. 	
25.	If coil is open, then L and R become :		
	(a) ∞, 0	(b) ^{0,∞}	
	(c) ^{∞, ∞}	(d) 0, 0	
26.	A coil of resistance R and inductance L is conn current in the coil is :	ected to a battery of E volt e.m.f. The final	
	(a) E/R	(b) E/L	
C 27.	(c) $\sqrt{E/(R^2 + L^2)}$ What is the basic reason for the shining of a dia	(d) $\sqrt{EL/(R^2 + L^2)}$ amond?	
	(a) Reflection	(b) Refraction	
	(c) Dispersion of light	(d) Total internal reflection	
28.	The potential barrier at a p-n junction is due to These charges are :	the charges on either side of the junction.	
	(a) fixed donor and acceptor ions	(b) minority carries	
	(c) majority carries	(d) both majority and minority carries	
29.	The ratio of thermionic currents (I/I_0) for a meta from T_0 to T as shown in the figure (I and I_0 are one is correct?	al when the temperature is slowly increased currents at T and T $_0$ respectively). Then which	
	(a) A	(b) B	
	(c) C	(d) D	
		5	

30.	For the equation $F \propto A^a v^b d^c$, where F is the force, A is the area, v is the velocity and d is the density, the values of a, b and c are respectively		
	(a) 1, 2, 1	(b) 2, 1, 1	
	(c) 1, 1, 2	(d) 0, 1, 1	
31.	A stone of mass 1 kg is tied to the end of a strin velocity of the stone at the bottom of the circle is without slackening of the string. What is the tens $g = 10 \text{ ms}^{-2}$)	g 1m long. It is whirled in a vertical circle. The s just sufficient to take it to the top of circle sion in the string at the top of the circle? (Take	
	(a) zero	(b) 1 N	
	(c) $\sqrt{10}$ N	(d) 10 N	
32.	A motorcycle is going on an overbridge of radius the motorcycle is ascending on the overbridge,	s ${\tt R}$. The driver maintains a constant speed. As the normal force on it	
	(a) Increases	(b) Decreases	
	(c) Remains the same	(d) Fluctuates	
33.	Four metallic plates of equal surface area A are capacitance between A ann B is,	arranged, as shown. The equivalent	
	(a) <u>ε_oA</u>	(b) <u>3ε_αA</u>	
34	$\begin{pmatrix} c \\ \frac{3\varepsilon_{c}A}{2d} \end{pmatrix} = \begin{bmatrix} c \\ \frac{3\varepsilon_{c}A}{2d} \end{bmatrix}$	d (d) $\frac{2}{3} \frac{s_{o}A}{d}$ A B B V t L t	
0.1	sources of light with phase difference 3π rad. The amplitude at the given point will be,	neir amplitudes are 1 cm each. The resultant	
	(a) 5 cm	(b) 3 cm	
	(c) 2 cm	(d) zero	
35.	Two ideal diodes are connected to a battery as s battery is	shown in the circuit. The current supplied by the	
	$A \begin{array}{c c} D_1 & 10\Omega \\ \hline D_2 & 20\Omega \\ \hline D_2 & & D \end{array}$		
	(a) 0.75 A	(b) zero	
	(c) 0.25 A	(d) 0.5 A	
36.	In a transistor		

	 (a) the emitter has the least concentration of impurity 	(b) the collector has the least concentration of impurity
	(c) the base has the least concentration of impunity	(d)
		all the three regions have equal concentration of impurity
37.	The current gain of a transistor in common base transistor in common emitter mode is	e mode is 0.995. The current gain of the same
	(a) 197	(b) 201
	(c) 198	(d) 199
38.	The mother and daughter elements with the em	nission of alpha particles are called :
	(a) isotopes	(b) isobars
	(c) isomers	(d) isodiaphers
39.	A proton accelerated through a potential V has wavelength of an a -particle, when accelerated	de-Broglie wavelength I. Then the de-Broglie I through the same potential V is
	(a) <u>λ</u>	(b) <u>λ</u>
	2	$\sqrt{2}$
	(c) <u>}</u>	(d) 2
4 0.	$2\sqrt{2}$ In a moving coil galvanometer, we use a radial	magnetic field so that the galvanometer scale is
	(a) logarithmic	(b) exponential
	(c) linear	(d) none of these
41.	A conducting rod of mass m and length <i>l</i> is place uniform magnetic field B is acting perpendicular through the rod and it acquires an initial velocity	ced over a smooth horizontal surface. A to the rod. Charge q is suddenly passed y v on the surface, then q is equal to
	(a) <u>2mv</u>	(b) B <i>i</i>
	BI	2mv
		(d) $\frac{Blv}{2m}$
42.	A publicup of $= DO^{210}$ originally of root omits 0	2111
	speed of the daughter nucleus?	-particle with speed •. What will be the recoil
	(a) 4υ/206	(b) 4u/214
	(c) υ/206	(d) υ/214
43.	Thermal neutrons are those which :	
		7

	(a) are at very high temperature		(b) move with high velocities
	(c) have kinetic energies similar to th surrounding molecules	ose of	(d) are at rest
44.	The mass defect per nucleon is called		
	(a) binding energy	(b) p	packing fraction
	(c) ionization energy	(d) e	excitation energy
45.	The rest mass energy of deuteron $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$ equivalent to 939 MeV and that of a nervolution and a neutron if it	H ,is 18 eutron is	876 MeV, the rest of mass of a proton is 940 MeV. A deuteron may disintegrate to a
	(a) emits a g-ray photon of energy	2 MeV	(b) captures a g-ray photon of energy 2 MeV
	(c) emits a g-rays photon of energy MeV	' 3	(d) captures a g -ray photon of energy 3 MeV
<u>Sect</u> Sub	t <u>ion :2</u> j <u>ect :</u> Chemistry		
1.	Law of multiple proportion was given by	/	
	(a) Landolt) Dalton	
	(c) Richter	: 1) Proust	ione Dyt I to
2	The mass of 112 cm ³ of O_2 gas at STP	is	IUIIS TVL LU
	(a) 0.16 g	(b) 0	8 a
	(c) 0.08 g	(d) 1	6 g
3.	The equivalent mass of Fe in FeO is	()	
0.	(a) 56		(b) 28
	(c) 36		(d) 18.66
4.	The amount of the zinc needed to proc	duce 112	mL of H ₂ at STP on reaction with dil H ₂ SO ₄ will
	(a) 0.65 g		(b) 0.325 g
	(c) 6.5 g		(d) 3.25 g
5	An atom present at the corper is share	ad hy how	v many cubes
0.	(a) 2	, a by now	(h) 6
	(c) 8		(d) 12
e	At rolatively bigh property the year day	Mool's -	(w) 12
ΰ.	At relatively high pressure, the value of $(a) PV=RT-a/V$	waaise	quation of state reduces to
	(u) · · · · · · · ·	(D) PV=	aRT/V ^e
	(C) $PV=RT-a/V^2$	(d) ₽V=	R T + Pb
			8

7.	Which of the following does not have a fa	ce-centred cubic lattice ?
	(a) Fe	(b) Ni
	(c) Cu	(d) Na
8.	The element used by Rutherford in his far	nous scattering experiment was
	(a) tin	(b) gold
	(c) lead	(d) silver
9.	The uncertainly in the position of an electric ($v_e = 2.2 \times 10^6 \text{ m s}^{-1}$)	ron if the uncertainly in its velocity is 0.1% would be
	(a) 20 nm	(b) 22 nm
	(c) 26 nm	(d) 28 nm
10.	Among $AI_2 O_3$, SiO_2 , $P_2 O_3$ and SO_2 the c	correct order of acid strength is
	(a) Al ₂ O ₃ < SiO ₂ < SO ₂ < P ₂ O ₃	(b) SiO ₂ < SO ₂ < Al ₂ O ₃ < P ₂ O ₃
	(C) SO ₂ < P ₂ O ₃ < SiO ₂ < Al ₂ O ₃	(d) Al ₂ O ₃ < SiO ₂ < P ₂ O ₃ < SO ₂
11.	Lithium is the strongest reducing agent ar factor	nong the alkali metals due to which of the following
	(a) ionization enthalpy	(b) electron affinity
	(c) hydration enthalpy	(d) lattice enthalpy
12.	The shape of O_2F_2 is similar to that of	μιυμό γνι μι
	(a) C ₂ F ₂	(b) H ₂ O ₂
	(c) H ₂ F ₂	(d) C ₂ H ₂
13.	Nitrogen dioxide cannot be prepared by he	eating :
	(a) KNO ₃	(b) Pb(NO ₃) ₂
	(c) Cu(NO ₃) ₂	(d) AgNO₃
14.	The following question contains two state Statement 1: SiF_6^{2-} ions known but $SiCl_6^{2-}$ is	ments. Choose one of the options below: s not.
	Statement 2 : F has small size and lone p Si strongly.	air of electrons on fluorine interact with d-orbitals of
	(a) Statement-1 is True, Statement -2 is true, Statement - 2 is a correct explanation for Statement -1	(b) Statement -1 is True, Statement -2 is true, Statement-2 is not a correct explanation for Statement-1
	(c) Statement-1 is True, Statement-2 is False	(d) Statement-1 is False, Statement-2 is True
15.	Propene when heated with chlorine at abo	out 500°C forms
	(a) CH ₂ CI - CH = CH ₂	(b) сн ₃ — снсі — сн ₂ сі
	(с) сн ₂ сі — снсі — сн ₂ сі	(d) All of these

16.	 The following question contains two statements. Choose one of the options below: Statement 1 : But-I-ene reacts with HBr in the presence of benzoyl peroxide to give 1- bromobutane. Statement 2 : In the presence of peroxide, free radical mechanism is followed. 		
	(a) Statement-1 is True, Statement -2 is true, Statement - 2 is a correct explanation for Statement -1	(b) Statement -1 is True, Statement -2 is true, Statement-2 is not a correct explanation for Statement-1	
	(c) Statement-1 is True, Statement-2 is False	(d) Statement-1 is False, Statement-2 is True	
17.	An aqueous solution freezers at -0.186° C. W K _b = 0.512 ?	hat is its elevation in boiling point if $K_f = 1.86$ and	
	(a) 0.186	(b) 0.512	
	(c) 0.80	(d) 0.0512	
18.	The units of second order reaction rate consta	ant is	
	(a) L ⁻¹ mol sec ⁻¹	(b) L ² mol ⁻² sec ⁻¹	
	(c) L mol ⁻¹ sec ⁻¹	(d) sec ⁻¹	
19.	Which of the following is least effective in cau	using flocculation of ferric hydroxide solution?	
	(a) K ₄ [Fe(CN) ₆]	(b) Na ₂ CrO ₄	
	(c) KBr	(d) Na ₂ SO ₄	
20	Which of the following pairs of ions have the s	ame electronic configuration ?	
	(a) Ni^{2+} , Co^{3+} (b)) Fe ³⁺ . Mn ²⁺	
	(c) Fe ²⁺ , Mn ²⁺ (d) Sc ³⁺ , Ti ³⁺	
21.	In the complex [ML _x] ⁿ⁺ , the central metal ion I ligand. What will be the number of unpaired e	has five unpaired electrons and L is a weak electrons in this complex ion ?	
	(a) 0	(b) 1	
	(c) 5	(d) Cannot be predicted	
22.	The enzymes which are used to convert star	ch into ethyl alcohol are :	
	(a) maltase, diastase	(b) diastase, maltase, zymase	
	(c) invertase, zymase	(d) invertase, diastase, maltase	
23.	The most symmetric crystal system is		
	(a) Cubic	(b) Tetrahedral	
	(c) Triclinic	(d) Orthorhombic	
24.	The arrangement of CI ⁻ ions in CsCI structure	e is	
	(a) hcp	(b) Simple cubic	
	(c) fcc	(d) bcc	
		10	
		10	1

25.	CsBr crystal has bcc structure. It has an edge length of $_{4.3}{ m \AA}^{ m o}$. The shortest interionic distance		
	between Cs^+ and Br^- ions is		
	(a) ° 3.72Å	(b) _{3.72} Å	
	(c) ° 4.3Å	(d) ° 7.44 Å	
26.	Picric acid is obtained from		
	(a) phenol + dil. HNO $_3$	(b) phenol + conc. HNO ₂	
	(c) phenol + conc. $H_2 SO_4$	(d) phenol + conc. HNO $_3$	
27.	Boiling point of ethanol is higher than that	of diethyl ether because	
	(a) molecular mass of ether is higher	(b) molecular mass of ether is lower	
	(c) existence of hydrogen bonding in ethanol	(d) ether is lighter than alcohol	
28.	The reagent with which both aldehyde and	acetone react easily is	
	(a) Fehling's reagent	(b) Grignard reagent	
	(c) Schiff's reagent	(d) Tollen's reagent	
29.	In esterification reaction, conc. H ₂ SO ₄ is (a) catalyse the reaction (c) prevent the backward reaction	necessary to (b) accelerate the forward reaction (d) obtain ester in pure form by removing water	
30.	The N-H bond in \mathbb{NH}_3 is:		
	(a) Covalent	(b) ionic	
	(c) dative	(d) hydrogen	
31.	The energy order of dipole-dipole forces is		
	(a) 1 to 2 kJ/mole	(b) 3 to 4 kJ/mole	
	(c) 10 to 20 kJ/mole	(d) 15 to 25 kJ/mole	
32.	According to 1 st law of thermodynamics		
	(a) The energy of system is constant	(b) The energy of universe is constant	
	(c) The energy of surroundings is consta	nt (d) The energy of system and surroundings are not constant	
33.	A reaction, A + B \rightarrow C + D + q is found to	have a positive entropy change. The reaction will be	
	(a) possible at high temperature	(b) possible only at low temperature	
	(c) not possible at any temperature	(d) possible at any temperature	
34.	Which of the following elements does not	show disproportion tendency?	
		11	

	(c) Mutant	(d) Cultivar		
2	. Common features of species within	a genus are o	called :	
	(a) Correlated characters	(b) Common	characters	
	(c) Genus characters	(d) Similar ch	naracters	
5	. First time Binomial nomenclature w	as written as:		
	(a) Greek	(b) Latin		
	(c) English	(d) Italian		
6	5. Species are considered as			
	 (a) Real units of classification de taxonomists 	vised by	(b) Real basic units of classification	
	(c) The lowest units of classificat	ion	(d) Artificial concept of human mind which cannot be defined in absolute terms	
7	7. The system of plant classification	proposed by (Carolus Linnaeus was artificial because	
	(a) It was based on evolutionary relationship of plants		(b) It was based on similarities and differences in floral and other morphological characters only	
	(c) It took into account the physic facts along with the morpholo characters	ological gical	(d) None of the above	
Ę	Microridges on the surface of Amore	eba help in:	ione Dyt I t	
	(a) Adhesion	(b) Respiratio		U
	(c) Excretion	(d) Osmoreg	ulation	
9	. Chemically stigma (eye spot) of Ch	lamydomonas	s is:	
	(a) proteinaceous	(b) lipoidal		
	(c) carbohydraceous	(d) siliceous		
1	0. The photosynthetic product is:			
	(a) floridean starch in red algae		(b) laminarin and mannitol in brown stage	
	(c) starch in green algae		(d) all of the above	
1	1. Study the given figure and identify	the kind of p	hyllotaxy	
	(a) Alternate - Opposite superposite Opposite decussate	sed -	(b) Alternate - Opposite superposed - Whorled	
	(c) Opposite decussate - Alterna Whorled	te -	(d) Opposite superposed - Worled - Alternate	

12.	Persistent calyx is the character of plants	belonging to family
	(a) Solanaceae	(b) Malvaceae
	(c) Cruciferae (Brassicaceae)	(d) Compositae
13.	Polyarch vascular bundles generally occur	r in
	(a) Monocot stem	(b) Dicot stem
	(c) Dicot root	(d) Monocot root
14.	A typical monocotyledonous root is charac	cterized by
	(a) Usually more than six xylem bundles	(b) Large and well developed bundles
	(c) No secondary growth	(d) All of these
15.	A conjoint and open vascular bundle will b	be observed in the transverse section of
	(a) Monocot root	(b) Monocot stem
	(c) Dicot root	(d) Dicot stem
16.	Which of the following is an example of im	ibibitions?
	(a) Uptake of water by root hair	(b) Exchange of gases in stomata
	(c) Swelling of seed when put in soil	(d) Opening of stomata
1 7.	 Dr F. Went noted that if coleoptile tips were agar would produce a bending when place what significance is this experiment? (a) It made possible the isolation and example and the isolation of auxin 	 re removed and placed on agar for one hour, the ed on one side of freshly- cut coleoptile stumps. Of act (b) It is the basis for quantitative determination of small amounts of growth- promoting substances
	(c) It supports the hypothesis that IAA is auxin	(d) It demonstrated polar movements of auxins
18.	Fruit and leaf drop at early stages can be	prevented by the application of:
	(a) Cytokinins	(b) Ethylene
	(c) Auxins	(d) Gibberellic acid
19.	In a seed of maize, scutellum is considered	ed as cotyledon because it
	(a) Protects the embryo	(b) Contains food for the embryo
	(c) Absorbs food materials and supplies them to the embryo	(d) Converts itself into a monocot leaf
20.	Ovulation in the human female normally ta	akes place during the menstrual cycle
	 (a) At the beginning of the proliferative phase 	(b) At the end of the proliferative phase
	(c) At the mid secretory phase	(d) Just before the end of the secretory phase

21.	1. Identify the parts labeled A, B, C and D in the given figure and select the correct option. $ \int_{a}^{a} \int_{b}^{a} \int_{b}^{$			
(a	 a) Chalaza - Female gametophyte - Embryo sac - Micropyle 	(b) Chalaza - Nucellus - Embryo sac - Micropyle		
(C) Micropyle - Egg - Embryo sac - Chalaza	(d) Micropyle - Nucellus - Embryo sac - Chalaza		
22.	Double fertilization was first discovered in 1	898 by in Fritillaria and Lilium		
	(a) Nawaschin	(b) Strasburger		
	(c) Amici	(d) Focke		
23.	The monocotyledonous seed consists of o	ne large and shield shaped cotyledon known as		
	(a) Aleurone layer	(b) Scutellum		
	(c) Coleoptile	(d) Hilum		
24.	In which one of the following pollination is a	utogamous?		
	(a) Geitonogamy (b) Xenogamy		
_	(c) Chasmogamy (d) Cleistogamy		
25.	The F ₂ generation offspring in a plant show (a) Variable genotypic and phenotypic ratios	ving incomplete dominance, exhibit (b) A genotypic ratio of 1 : 1		
	(c) A phenotypic ratio of 3 : 1	(d) Similar phenotypic and genotypic ratios of 1:2:1		
26.	Genes which code for a pair of contrasting	traits are known as		
	(a) Dominant genes	(b) Alleles		
	(c) Linked genes	(d) None of these		
27.	What is the probability of production of dwa tall pea plants?	arf offsprings in a cross between two heterozygous		
	(a) Zero	(b) 50%		
	(c) 25%	(d) 100%		
28.	Phenotypic and genotypic ratio is similar in	case of		
	(a) Complete dominance	(b) Incomplete dominance		
	(c) Over dominance	(d) Epistasis		
29.	Both sickle cell anaemia and Huntington's	chorea are		
	(a) Congenital disorders	(b) Pollutant induced disorders		
	(c) Virus related diseases	(d) Bacteria related diseases		

30.	DNA nucleotides are attached by		
	(a) Hydrogen bond	(b) Covalent bond	
	(c) Van der waals bond	(d) Electrovalent Bond	
31.	Sunn hemp (Indian hemp) is derived fr	om	
	(a) Malvaceae	(b) Leguminosae	
	(c) Compositae	(d) Solanaceae	
32.	Husk fibre Coir of commerce come from which part of coconut (Cocos nucifera)		
	(a) Epicarp	(b) Mesocarp	
	(c) Endocarp	(d) Seed coat	
33.	Birds specially chicken grown for meat only is known as		
	(a) Hybrid	(b) Broiler	
	(c) Bird mangement	(d) Bird culture	
34.	In honey, the main constituent is		
	(a) Calcium	(b) Sugar	
	(c) Protein	(d) Water	
35.	Which one of the following pairs is mis	matched ?	
	(a) Apis indica - honey	(b) Kenia lacca - lac	
	(c) Pila globosa - pearl	(d) None of these	
36.	Confusion technique uses		
	(a) Juvenile hormone	(b) Ecdysone	
	(c) Pheromone	(d) A combination of hormones	
37.	Consider the following statements (A-I	D) about organic farming(A) Utilizes genetically modified	
	crops like Bt cotton(B) Uses only naturally produced inputs like compost(C) Does not use		
	Which of the above statements are co	rrect	
	(a) (B) and (C) only	(b) (A) and (B) only	
	(c) (B), (C)and (D)	(d) (C) and (D)only	
38.	Which of the following bacteria is pres	ent in the rumen of cattle?	
	(a) Azotobacter	(b) Rhizobium	
	(c) Methanobacterium	(d) Azospirillum	
39.	Which one of the following pairs is cor	rectly matched?	
	(a) Rhizobium - Parasite in the roots leguminous plants	of (b) Mycorrhizae - Mineral uptake from soil	
	(c) Yeast - Production of biogas	(d) Azospirillum - Symbiotic ∞fixing bacterium	
		17	

40.	Two microbes found to be very useful in gen	etic engineering are
	 (a) Vibrio cholera and a tailed baceriophage 	(b) Diplococcus sp. And Pseudomonas sp.
	(c) Crown gall bacterium and Caenorhabditis elegans	(d) Escherichia coli and Agrobacterium tumefaciens
41.	Geometric representation of age structure is	a characteristic of
	(a) population	(b) landscape
	(c) ecosystem	(d) Biotic community
42.	Tiger is not a resident in which one of the fol	lowing national park?
	(a) Sunderbans	(b) Gir
	(c) Jim Corbett	(d) Ranthambhor
43.	Which one of these is not included in the bio	diversity hot spots of India?
	(a) Western ghats	(b) Himalayas
	(c) Indo Burma	(d) North Indian Plains
44.	Which of the following statements is correct?	?
	(a) Steller's sea cow is an extinct animal	(b) Lantana is popularly known as carrot grass
e	(c) Parthenium is an endemic species of our country	(d) African catfish is not a threat to indigenous catfishes
45.	All cells of a multicellular body have same kazygote by -	aryotype because the body has developed from a
	(a) meiotic and mitotic divisions	(b) only mitotic divisions
	(c) only meiotic divisions	(d) mitotic and amitotic divisions
<u>Sect</u> Subj	ion :4 <u>ect:</u> Zoology	
1.	Which is anticoagulated in blood cell countin	ıg?
	(a) CH ₃ COOH	(b) H - CHO
	(c) EDTA	(d) C ₆ H ₆
	(e) HCI	
2.	The diagram given below represents the his	tology of a stripped muscle. Label the parts A, B,
	C, D, E and F	
		18

	(a) A - Sarcoplasm, B - Νι Sarcolemma, D - Myof F - Light band	ıcleus, C - ibril, E - Dark band,	(b) A - Sarcoplasm, B - Light band, C - Myofibril, D - Sarcolemma, E - Nucleus, F - Dark band
	(c) A - Light band, B - Sar Myofibril, D - Sarcolem Dark band	coplasm, C - ıma, E - Nucleus, F -	(d) A - Sarcolemma, B - Nucleus, C - Dark band, D - Light band, E - Sarcoplasm, F - Myofibril
	3. A your infant may be feedin which the infant passes out	ig entirely on mother' is quite yellowish. W	s milk which is white in colour but the stools hat is this yellow colour due to
	(a) Intestinal juice		(b) Bile pigments passed through bile
	(c) Undigested milk protein	n casein	(d) Pancreatic juice poured into duodenum
	4. Which of the following teeth a	are lophodont	
	(a) Incisor and canine	(b) Premolar and mc	lar
	(c) Canine and premolar	(d) Premolar and inc	isor
	5. Vitamin D is synthesised by	one of the following	with the help of sunlight
	(a) Skin		(b) Gall bladder
	(c) Liver		(d) Pancreas
	6. In man cellulose is digested i	n	
L	(a) The caecum	(b) The colon	
	(c) The appendix	(d) Not digested	at all nc Dyt I tr
	7. The intestine is different from	n the stomach by the	presence of
	(a) Digestive gland	(b) Villi	
	(c) Sub-mucosa	(d) Seros	sa
	8. Wisdom teeth in human is		
	(a) 3rd molar & 4 in number	(b) 3rd molar & 2 in	number
	(c) 2nd molar & 4 in number	(d) 2nd molar & 2 ir	number
	9. Which of the following carrie	s glucose from diges	tive tract to liver
	(a) Hepatic artery	(b) Pulmona	ary vein
	(c) Hepatic portal vein	(d) Renal po	ortal system
	10. Which of the following state	ments is incorrect?	
	(a) Brunner's glands are s	ubmucosal	(b) Irregular folds of gastric mucosa are rugae
	(c) Glisson's capsule is the tissue sheath of hepati	e connective c lobule	(d) Mesothelium or serosa lies in close proximity to the circular layer of muscularis
	11. The rate of heart beat per n	ninute is highest in ca	ase of
	(a) Elephant		(b) Whale
	(c) Man		(d) Mouse

12.	In haemoglobin iron is present in	
	(a) Ferrous form	(b) Ferric form
	(c) Metallic form	(d) Any form
13.	Contraction of a muscle is caused by	
	(a) Myosin	(b) Actin
	(c) ATP	(d) Actomysoin
14.	Bone is distinguished from the cartilage	e by the presence of
	(a) Collagen	(b) Blood vessels
	(c) Lymph vessels	(d) Haversian canals
15.	The thick filament in muscles is polyme	erized protein of
	(a) Meromyosins	(b) Actins
	(c) Troponins	(d) Tropomyosins
16.	Intercellular communication in multicel	lular organism occurs through
	(a) Digestive system only	(b) Respiratory system only
	(c) Nervous system only	(d) Both nervous and endocrine system
17.	A small passage that permits continuit	y between scala vestibule and scala tympani is
	(a) Heicotrema	(b) Eustachian tube
	(c) Cochlea	(d) Vestibule
18.	Steroid hormones regualte gene activit	y through
	(a) Transcription	(b) Binding with specific DNA sites
	(c) Removing the repressor molecules	(d) The formation of a receptor complex
19.	Which of the following hormones is ne characters, in mammals including hum	cessary for the development of secondary sexual nan beings?
	(a) Estrogen	(b) FSH
	(c) Testosterone	(d) Both (a) and (c)
20.	The 24 hour (diurnal) rhythm of our bo hormone	dy such as the sleep wake cycle is regulated by the
	(a) Adrenaline	(b) Melatonin
	(c) Calcitonin	(d) Prolactin
21.	Which one of the following biomolecule	es is correctly Characterized ?
	(a) Adenylic acid . adenosine with a glucose phosphate molecule	(b) Alanine amino acid . Contains an amino group and an acidic group anywhere in the molecule
	(c) Lecithin . a phosphorylated glycer found in cell membrane	ide (d) Palmitic acid . an unsaturated fatty acid with 18 carbon atoms
		20

22. In the given T.S of human ovary identify A to F and select the correct option

- (a) A-secretion follicle, B-Tertiary follicle with antrum, C-Ovum, D-Corpus luteum, E-Primary follicle, F-Corpus albicans
- (c) A-Graafian follicle, B-Tertiary follicle with antrum, C-ovum, D-corpus albicans, Eprimary follicle F-Corpus luteum
- 23. Layers of an ovum from outside to inside is
 - (a) Corona radiata, zona pellucida and vitelline membrane
 - (c) vitelline membrane, zona pellucida and corona radiata

(b) A-Graafian follicle, B-Tertiary follicle with antrum, C-ovum, D-corpus spongiosum, E-primary follicle F-Corpus albicans

(d) A-Graafian follicle, B-Tertiary follicle with antrum, C-ovum, D-corpus luteum, E-primary follicle F-Corpus albicans

- (b) Zona pellucida, corona radiata and vitelline membrane
- (d) Zona pellucida, vitelline membrane, and corona radiata
- 24. 1 st polar body is formed at which stage of oogenesis?
 - (a) 1 st meosis
 - (c) 1 st mitosis
- 25. Industrial melanism is an example of
 - (a) Defensive adaptation of skin against ultraviolet radiations
 - (c) Darkening of skin due to smoke from industries
- (b) 2nd meosis
- (d) Differentiation
 - (b) Drug resistance
 - (d) Protective resemblance with the surrounding

(b) Thorns of Bougainviliea and tendrils of

(d) Thorns of Bougainvillea and tendrils of Cucurbita - Eyes of octopus and mammals

Cucurbita - Wings of butterflies and birds

- 26. Which one of the following options gives one correct example each of convergent evolution and divergent evolution?
 - (a) Eyes of octopus and mammals -Bones of forelimbs of vertebrates
 - (c) Bones of forelimbs of vertebrates -Wings of butterfly and birds
- peciation?
- 27. Which of the following is most important for speciation?
 - (a) Seasonal isolation
 - (c) Behavioural isolation

- (b) Reproductive isolation
- (d) Tropical isolation
- 28. One of the oldest, best preserved and most complete hominid fossil commonly known as 'Lucy' belongs to the genus
 - (a) Australopithecus
 - (c) Dryopithecus

- (b) Oreopithecus
- (d) Pithecanthropus
- 29. The most accepted theory of origin of life is

	(a) theory of spontaneous generation	(b) theory of special creation
	(c) Oparin-Haldane theory	(d) theory of eternity of life
30.	Allergy involves	
	(a) IgE	(b) lgG
	(c) IgA	(d) IgM
31.	Passive immunity can be conferred direc	tly by
	(a) Vaccines	(b) Antitoxins
	(c) Colostrum	(d) Both (b) and (c)
32.	Injection of antitoxin in tetanus confers wh	nich type of immunization?
	(a) Active immunization	(b) Passive immunization
	(c) Auto immunization	(d) Humoral immunization
33.	Vaccine against polio viruses is an examp	ble of
	(a) Auto immunization	(b) Passive immunization
	(c) Active immunization	(d) Simple immunization
34.	Assertion : Most of experiments regarding : It is a fruit fly.	g sex determination were done on Drosophila.Reason
e	(a) If both the assertion and the reason true and the reason is a correct explanation of the assertion	are (b) If both the assertion and reason are true but the reason is not a correct explanation of the assertion
	(c) If the assertion is true but the reason false	(d) If both the assertion and reason are false
	(e) If the assertion is false but reason is true	
35.	Which of the following is required for micro	o injection method of gene transfer?
	(a) Micro particles	(b) Micro pipettes
	(c) Divalent cations	(d) UV radiations
36.	Which of the following statements are cor (i) It can process large volumes of culture (ii) It provides optimum temperature and p (iii) It is completely an automated tool (iv) It is a compact thermal cycler	rrect with respect to a bioreactor? oH
	(a) (i) and (ii)	(b) (i), (ii) and (iii)
	(c) (iii) and (iv)	(d) (ii) and (iii)
37.	An enzyme catalyzing the removal of nucl	leotides from the ends of DNA is
	(a) Endonuclease	(b) Exonulease
	(c) DNA ligase	(d) Hind II
1		

38. The DNA fragments separated on an agarose gel can be visualized after staining v		se gel can be visualized after staining with:
	(a) Acetocarmine	(b) Aniline blue
	(c) Ethidium bromide	(d) Bromophenol blue
39.	Electrocardiograph was developed by	
	(a) Hans Berger	(b) Willem Kolff
	(c) Willem Einthoven	(d) Wilhelm Roentgen
40.	Yeast is used in the production of	
	(a) Citric acid and lactic acid	(b) Lipase and pectinase
	(c) Bread and beer	(d) Cheese and butter
41.	Bt toxin protein crystals present in bacteriur themselves because	m Bacillus thuringiensis do not kill the bacteria
	(a) Bacteria are resistant to the toxin	(b) Toxins occur as inactive protoxins in bacteria
	(c) Bacteria enclose toxins in a special sa	c (d) None of these
42.	Early detection of a disease is possible by	
	(a) PCR	(b) Gene therapy
	(c) Recombinant DNA technology and ELISA	(d) Both (a) and (c)
43.	During the processing of proinsulin into the	mature insulin
	(a) C-peptide is added to proinsulin	(b) C-peptide is removed from proinsulin
	(c) B-peptide is added to proinsulin	(d) B-peptide is removed from proinsulin
44.	The genetically-modified (GM) brinjal in Ind developed for:	ia has been
	(a) insect-resistance	(b) enhancing shelf life
	(c) enhancing mineral content	(d) drought-resistance
45.	Just as Culex is to elephantiasis (filariasis)	so is:
	(a) Entamoeba to dysentery	(b) Rat flea to bubonic plague
	(c) Sandfly to sleeping sickness	(d) Pork to tapeworm